## Print Quality and Speed Performances of New Silicon-Based High Density Magnetographic Head

Bernard CHERBUY Nipson Printing Systems BELFORT - FRANCE

IS&T Tenth International Congress on Advances in Non-Impact Printing Technologies

New Orleans, October 30 - November 4, 1994

## Contents

- Printhead design and manufacturing process
- Multiplexing electronics
- Write dynamics
- Power dissipation
- Conclusion

Scope

#### Magnetographic Printer

- Printheads produce magnetic recording field
- Latent images are formed on hard metallic medium (drum)
- Latent images attract particles of toner
- Mono-component toner is transferred to the paper

### Magnetographic Printhead Principle



vertical recording head

# Magnetographic Printhead (cont.) Design

- Silicon substrate
- Double-metal integrated circuit technology used for flat coil and inter connections
- Co-integrated diode matrix on the silicon substrate (multiplexing function)
- Electro-chemical techniques used for magnetic circuit construction (Nickel-Iron)
- Adressability at present: 480 DPI

### Magnetographic printhead principle Vertical Recording



## MAGNETOGRAPHIC PRINTHEAD (NIPSON DEVELOPMENT)

### **Principle**



## MAGNETOGRAPHIC PRINTHEAD (NIPSON DEVELOPMENT)

#### **Cross Section**



## Magnetographic printhead design Vertical Recording



NIPSON Printing Systems

# Magnetographic Printhead (cont.) Pole Array

S.E.M. view of a part of the two-dimension pole array and flat coil



NIPSON PRINTING SYSTEMS

# Magnetographic Printhead (cont.) View of a Module





# Multiplexing Electronics Principle



A: recording time

B: time between pulses

# Multiplexing Electronics (cont.) Maximum Printing Speed



### Write Dynamics

#### • Input data:

Recording time (recording pulse width)

Time between pulses

#### Output data:

Blackness of lines (optical density)

Straightness of lines (mean distance between edge and square root best fit)

# Write Dynamics (cont.) Print Quality VS Recording Time





#### • Results:

- Optimum print quality for a recording time  $> 0.2 \mu s$ 

### Power Dissipation Overview

Power dissipation sources:

Friction printhead / drum

Joule effect in conductors

Corrective actions:

Cooled drum

pulsed air on modules

# Power Dissipation (cont.) Thermal Transfers



- Conduction between silicon chip and drum
- Conduction between head module and support bar
- 3 Convection on module and support bar

Printhead assembly: cross section

### Power Dissipation (cont.)

Friction between Printhead and Drum

• Friction characteristics (for 1 head module):





Applied Force: (a): 4 N, (b): 8 N

#### Results:

- The power is totaly transferred in the drum
- No temperature elevation with cooled drum

NIPSON PRINTING SYSTEMS

# Power Dissipation (cont.) Joule Effect

### Dissipated power per module:



## **Power Dissipation** (cont.) Thermal Transfer Ratio

- Characterization:
  - Finite element method
  - Experimental verification
- Results in terms of thermal transfer distribution:
  - Conduction to the drum: 70 %
  - Conduction to the support bar: 9 %
  - Convection: 21 %



ANSYS 4.4A JAN 26 1992 10:25:34 POST1 STRESS STEP=1 ITER=1 TEMP SMN =22 SMX =36.654

DIST=22.743 XF =12 YF =12 ZF =0.645 22 24.442 26.885 29.327 31.769

**Power Dissipation** (cont.) Example of F.E.M. Analysis

# Power Dissipation (cont.) Module Temperature



## Power Dissipation (cont.) Limitations

#### To avoid:

- Mechanical deformation
- Degradation of tribologic layer

Maximum module temperature: 37 °C

Maximum dissipated power per module: 4.8 W

# **Conclusion** Operating range

### With current parameters:

- print density: 480 dpidriving current: 0.35A
- recording pulse width: 0.3µs
- minimum time between pulses: 1.5µs
- maximum power dissipation: 4.8W

#### Maximum printing speed:

- 60 m/mn with a page coverage rate of 50%
- 85 m/mn with a page coverage rate of 38%

### Further improvement In Progress

- Development:
  - Diminution of the rise time
  - Diminution of the decay time of the driving current
- New conditions:
  - recording pulse width: 0.2μs,
  - time between pulses: 1.3µs
- Speed limit:
  - 100 m/mn, with a page coverage rate of 45%.